
UCRL-PROC-229217

Tool Support for Inspecting the
Code Quality of HPC
Applications

T. Panas, D. Quinlan, R. Vuduc

March 19, 2007

Int'l Conf. on Software Engineering (ICSE), Workshop on
Software Engineering for High-Performance Computing
(SE-HPC)
Minneapolis, MN, United States
May 20, 2007 through May 26, 2007



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 
 



Tool Support for Inspecting the Code Quality of HPC Applications

Thomas Panas Dan Quinlan Richard Vuduc
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

P.O. Box 808, L-550
Livermore, California 94551, USA
{panas2, dquinlan, richie}@llnl.gov

Abstract

The nature of HPC application development encourages
ad hoc design and implementation, rather than formal re-
quirements analysis and design specification as is typical
in software engineering. However, we cannot simply expect
HPC developers to adopt formal software engineering pro-
cesses wholesale, even while there is a need to improve soft-
ware structure and quality to ensure future maintainability.
Therefore, we propose tools that HPC developers can use
at their discretion to obtain feedback on the structure and
quality of their codes. This feedback would come in the
form of code quality metrics and analyses, presented when
necessary in intuitive and interactive visualizations. This
paper summarizes our implementation of just such a tool,
which we apply to a standard HPC benchmark as “proof-
of-concept.”

1. Introduction

Software engineering processes are not commonly ap-
plied to high-performance computing (HPC) application de-
velopment for several reasons [4, 9, 11]. First, developers
may focus on performance over other aspects of the code,
such as those that would ease future maintenance. Secondly,
the developer could be the application’s sole customer, at
least initially; thus, there may be little motivation to think
about how to use, maintain, adapt, or extend an applica-
tion beyond its initial use. Thirdly, many HPC developers
are not formally trained in software engineering processes;
development proceeds in an ad hoc manner, possibly with-
out requirements engineering, design plans, or documen-
tation. Collectively, these aspects of HPC software imply
high development and maintenance costs during a software
system’s lifetime.

However, it is unrealistic to expect sudden widespread
changes in the HPC applications development process [4].

Instead, we envision the creation of tools to help commu-
nicate software maintainability, component reusability, and
code quality aspects of HPC software to developers during
code development. These tools would provide such feed-
back unobtrusively, i.e., in a way that allows the developer
to decide how best to make trade-offs between the perfor-
mance and maintainability of their software. Moreover, by
providing the right kinds of analyses and visualizations,
these tools could even aid in restructuring and improving
code during forward-engineering.

This paper summarizes our on-going implementation of
just such a tool for large-scale C and C++ applications.
Our code quality feedback tool, which we implemented by
combining a number of other tools as described in Sec-
tion 3, does not enforce particular design or development
formalisms or processes [5]; rather, it provides information
and guidance in the form of specific code quality metrics.
Moreover, our tool can provide this information in the form
of interactive visualizations when appropriate, e.g., when
trying to understand whether the overall software architec-
ture matches the developer’s mental model, or whether a
subset of files or functions could be easily extracted as a
reusable component.

We provide concrete examples of the analyses our tool
produces in Section 2. These examples come from apply-
ing our tool to an actual HPC benchmark, SMG2000 [1].
Section 3 describes our tool’s implementation. We hope
this paper will stimulate discussion on the role of interactive
feedback about code quality during HPC application devel-
opment, with our tool serving as a constructive example of
what is possible.

2. Code Quality Metrics and Analyses

Our tool presents the user with a variety of code quality
metrics and analyses, of which this section provides con-
crete examples. Except where noted, we generated these



Property Value Remark
#LOC (estimate) 46,000 based on AST size
#LOC (wc) 28,301 w/o external libs
#Files 71 source and header
#Files (Source) 53
#Files (Header) 18
#AST NODES 515,030
#AST NODES 858,660 (with ext lib)
#CLASSES 0
#STRUCTS 33
#UNIONS 1
#FUNCTIONS 394 SMG2000 only
#FUNCTION CALLS 1,268

Table 1. Simple global statistics

Property Value Remark
#VAR LOCAL 3726
#VAR MEMBER 0
#VAR MEMBER PUBLIC 0
#VAR MEMBER STATIC 0
#VAR MEMBER STRUCT 245
#VAR MEMBER UNION 2
#VAR NON MEMBER 2 globals
#VAR NON MEMBER STATIC 5 file access

Table 2. Variable statistics

examples by applying our tool to SMG2000, an 50k lines-
of-code parallel HPC benchmark implementing the semi-
coarsening multigrid method [1].

We organize these examples into three categories (Sec-
tions 2.1–2.3), in increasing order of “context” about the
code that each requires. Roughly speaking, the more con-
text needed to understand a metric or analysis, the better
suited it is to either static or even interactive visualization.

2.1. Simple statistics

Our tool provides many metrics and analyses that can be
represented simply as a single number or short textual list,
such as the lines of code, the number of global variables, or
the number of function calls (measured statically), among
others. Tables 1–3 show several examples.

The statistics computed in Table 3 are among the most
interesting of the simple statistics. For instance, our tool
can check for certain kinds of security violations related to
API misuse1 and reports McCabe’s cyclomatic complexity
(“CC”) [6]. Where appropriate, the user may select partic-
ular thresholds on these statistics, and the tool will report
violations accordingly.

1E.g., using the C function sprintf rather than the safer snprintf.

Analysis Threshold #Violations
Security 0 4
CC per function < 20 20
CC per file < 100 4
Global Variable 0 2
LOC (per function) < 200 19
Cyclic dependency (funcs) 0 3
Cyclic dependency(files) 0 1
Naming >3 char 53
TOTAL 106

Table 3. Simple analysis results

2.2. Coherence reporting

In addition to the simple statistics of Section 2.1, our tool
can report coherences. Our tool presents this category of
information in the form of static pictures, to help illustrate
interesting context.

Figure 1. Variable access graph.

For example, consider the variable access graph in Fig-
ure 1, which shows coherences between global variables
(ovals and hexagons) and the source files which reference
them (boxes) as edges. Figure 1 reveals the existence of two
global variables (hexagons), and five file-scoped variables
(i.e., variables declared as static in a file’s global scope).
The two true global variables are each used only within a
single source file,2 and therefore could be eliminated by

2One of the variables, hypre global timing, appears in a header
file as well, but only when conditionally compiled for inclusion within the
corresponding source file shown.



converting them to be, for instance, file-scoped variables
instead. However, whether or not to do this is up to the
developer; our tool only reveals this opportunity.

As another example, consider the file-include graph for
SMG2000 shown in Figure 2, which shows coherences be-
tween source files (yellow boxes) and header files, where
we distinguish between the program’s header files (green
boxes) and system headers (grey boxes). A developer could
use this image to determine, for instance, whether there is
unwanted sharing of header files between logically distinct
components. (No such cases are shown in this figure.)

2.3. Interactive visualizations

In some cases, text dumps and even static pictures might
not illuminate issues to the developer. Our tool can pro-
vides interactive 3-D visualizations for such information,
and we use familiar visual metaphors from the real-world
to aid program comprehension and understanding in these
visualizations.

For example, consider the image of the project file struc-
ture depicted in Figure 3, which is a snapshot taken of the
tool while running on a sub-module of ROSE, the compiler
infrastructure that constitutes the front-end of our tool (see
Section 3.1). Such an image gives a developer a sense of
the overall software architecture. The five directories of
this sub-module appear as five “islands,” individual files
as “cities” within the island, and individual function defi-
nitions as “buildings.” In addition, aggregate shaded edges
between cities indicates that some function in one file (yel-
low end) calls some function in another file (dark end).
Other user-selected metrics and static or dynamic analyses
may be rendered as textures, colors, and icons in this view
(not shown; these elements appear when zooming in to view
structures more closely than shown in Figure 3).

From Figure 3, a developer can quickly see whether his
logical concept of components in the system holds. For in-
stance, the leftmost island has only incoming edges, imply-
ing that it is indeed a reusable component. If the developer
decides to make changes to the system to improve the qual-
ity or component structure, he can compare old and new
visualizations to make a quick judgement. Indeed, we used
our tool in this interactive fashion to create new, reusable
components for this sub-module of ROSE.

3. Tool Implementation

We built our visualization system by combining the tools
shown in Figure 4. We use ROSE [10] as the C++ front-
end. ROSEVA extends the ROSE API for use within the
VizzAnalyzer framework [8, 12]. ROSEVA has two main
interfaces, one for the parsing of C/C++ code (source re-
trieval and AST construction) and one for high level anal-

yses. Since ROSE and ROSEVA are developed in C/C++
and VizzAnalyzer in Java, we use Babel [3] to connect these
worlds. Finally, we use Vizz3D [7] to visualize the results.

3.1. ROSE

ROSE is an open infrastructure for building compiler-
based source-to-source analysis and transformation tools.
For C and C++, ROSE fully supports all language features,
preserves all source information for use in analysis, and
permits arbitrarily complex source-level translation via its
rewrite system. Although research in the ROSE project em-
phasizes performance optimization, ROSE contains many
of the components common to any compiler infrastructure,
and thus supports the development of general source-based
analysis and transformation tools.

3.2. ROSEVA

ROSEVA has been designed as a library using the ROSE
API. ROSEVA has two interfaces that VizzAnalyzer ac-
cesses via Babel: retrieval and analysis. The retrieval takes
the files to be parsed by ROSE as input and constructs in-
ternally an AST representation of the C/C++ source files.
For user interaction, selected graphs are returned to Vizz-
Analyzer. These results can be visualized directly or further
inspected with additional analyses.

Therefore, ROSEVA provides a second interface allow-
ing VizzAnalyzer to access a variety of analyses on any
graph produced by the frontend. Analyses results, such as
CC or LOC, are fed back directly as properties to the Vizz-
Analyzer. These properties are used by the VizzAnalyzer to
flexibly visualize any kind of program information.

3.3. Babel

Babel is a tool for mixing C, C++, Fortran77, Fortran90,
Python, and Java in a single application. Babel is the foun-
dation for a multi-language scientific component frame-
work. Babel addresses the language interoperability prob-
lem using Interface Definition Language (IDL) techniques.
In particular, Babel uses a Scientific Interface Definition
Language (SIDL) that addresses the unique needs of par-
allel scientific computing.

3.4. VizzAnalyzer

The VizzAnalyzer framework is our composition system
for reverse engineering, supporting the rapid composition of
individual software reverse engineering tools by reusing ar-
bitrary reverse engineering components. VizzAnalyzer dis-
tinguishes two domains: Program retrieval and analysis are



Figure 2. File-include graph.

Figure 3. Interactive software architecture visualization.



part of the software analysis domain and program visual-
ization is part of the information visualization domain [8].
Each domain operates on its own program model. For in-
stance, a model for software analysis may contain informa-
tion about a program’s clusters, metrics, cycles, etc., while
a model for information visualization contains information
about the visualization of a program, such as the position or
color of entities. VizzAnalyzer allows the merging of tools
from both domains.

3.5. Vizz3D

Vizz3D is a 3D information visualization system. It
presents system structure and quality information to a user
in a comprehensible way and leverages the understanding
of that system. Vizz3D is highly flexible and allows users
to define and re-assign layout algorithms and metaphors at
run-time. Hence, visualizations can be online-configured.
This also enables an interactive and iterative software anal-
ysis, where appropriate views are created on demand.

Figure 4. Visualization Tool Architecture

4. Summary and Future Work

In our on-going research, we are continuing to extend
and to evaluate our code quality feedback tool by working
with development teams. Work in the latter area is of course
critical to determining just how useful our approach could
be, particularly for the common development practices of
HPC applications [4].

The current version of our tool reports on a broad collec-
tion of metrics and analyses. Moreover, these reports (tex-
tual, static image, and interactive visualization) can include
a variety of metrics of specific interest to HPC developers.
For instance, we can report static counts of floating point
operations within each function, or any hardware processor
counts collected at run-time via an interface in ROSE to the
HPCToolkit [2], though we did not show these in our exam-
ples. We are also implementing analyses to extract reposi-
tory information, e.g., from CVS. We are actively extending
the metrics and analyses.

References

[1] The SMG2000 Benchmark, 2001.
http://www.llnl.gov/asci/platforms/purple/rfp/benchmarks.

[2] HPCToolkit, 2004.
http://www.hipersoft.rice.edu/hpctoolkit/index.html.

[3] Babel, July 2006.
http://www.llnl.gov/casc/components/babel.html.

[4] J. Carver, L. Hochstein, R. Kendall, T. Nakamura,
M. Zelkowitz, V. Basili, and D. Post. Observations about
software development for high-end computing. CTWatch:
Special Issue on HPC Productivity, October 2006.

[5] C. Larman and V. R. Basili. Iterative and incremental de-
velopment: A brief history. IEEE Computer, 36(6):47–56,
June 2003.

[6] W. Li and S. Henry. Maintenance metrics for the object ori-
ented paradigm. In IEEE Proceedings of the 1st Interna-
tional Software Metrics Symposium, May 1993.

[7] W. Löwe and T. Panas. Rapid construction of software com-
prehension tools. International Journal of Software Engi-
neering and Knowledge Engineering, December 2005.

[8] T. Panas. A Framework for Reverse Engineering. PhD
thesis, Department of Computer Science, Växjö University,
Sweden, December 2005.

[9] D. E. Post and R. P. Kendall. Large-scale computational sci-
entific and engineering project development and production
workflows. CTWatch: Special Issue on HPC Productivity,
October 2006.

[10] M. Schordan and D. Quinlan. A source-to-source architec-
ture for user-defined optimizations. In Proc. Joint Modular
Languages Conference, 2003.

[11] S. Squires, M. L. V. D. Vanter, and L. G. Votta. Software
productivity research in high-performance computing. CT-
Watch: Special Issue on HPC Productivity, October 2006.

[12] VizzAnalyzer. Available at: http://www.arisa.se/,
2006.

nijhuis2
Text Box
This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under contract W-7405-Eng-48.




